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T-cell motility in the early stages of the immune response modeled as a random walk
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The transport process by which a T cell makes high-frequency encounters with antigen-presenting cells
following infection is an important element of adaptive immunity. Recent experimental work has allowed in
vivo cell motility to be characterized in detail. On the basis of experimental data we develop a quantitative
model for encounters between T cells and antigen-presenting cells. We model this as a transport-limited
chemical reaction with the dynamics dependent on physical contact between randomly moving reactants. We
use asymptotic methods to calculate a time distribution which characterizes the delay before a T cell is
activated and use Monte Carlo simulations to verify the analysis. We find that the density of antigen-primed
dendritic cells within the lymph node paracortex must be greater than 35 cells/mm? for a T cell to have a more
than 50% chance of encountering a dendritic cell within 24 h. This density is much larger than existing
estimates based on calculations which neglect the transport process. We also use simulations to compare a T
cell which re-orients isotropically with a T cell which turns according to an experimentally observed distribu-
tion and find that the effects of anisotropy on the solution are small.
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I. INTRODUCTION

Within an individual, the population of lymphocytes is
highly diverse, enabling the immune system to respond to
almost any potential antigen. A consequence of maintaining
this diversity is that only a few lymphocytes are specific to
an unfamiliar antigen. Hence a key feature of adaptive im-
munity is the dramatic clonal expansion of antigen-specific
lymphocytes which follows infection.

Once antigen enters the body it is taken up by antigen-
presenting cells (APCs) near the site of infection. These
APCs then migrate to lymphoid tissue such as lymph nodes,
where lymphocytes are found in high concentrations. The
APCs remain there for some time displaying antigenic
peptides on their surface. Alternatively, soluble antigens
drain from peripheral tissue into lymph and are advected
along lymphatic vessels until they enter the draining lymph
node. Soluble antigen is taken up and presented inside the
lymph node by a subset of APCs called dendritic cells (DCs)
[1-3].

Lymphocytes are produced from haematopoietic stem
cells in the bone marrow. Lymphocytes which mature in the
bone marrow are called B cells; these cells are responsible
for producing antibody. Lymphocytes which migrate and ma-
ture in the thymus are known as T cells. T cells are further
subclassified according to expression of the surface glyco-
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proteins CD4 and CDS. There are distinct functional differ-
ences between the two classes: CD4 T cells are responsible
for regulating the B cell response, whereas CD8 T cells de-
tect and destroy virally infected cells. Thus T cells are fun-
damental in almost all immune responses.

Before a T cell can proliferate it must make physical con-
tact with an APC which displays the appropriate antigen.
When a T cell encounters an APC, a transient structure
known as a synapse is formed between the cells, across
which information is exchanged. The synapse facilitates an-
tigen surveillance by the T cell and is a necessary stimulus to
activate T-cell proliferation. However, the number of
antigen-specific precursor T cells in the repertoire is very
small; for example, in the repertoire of mice only around 1 in
103 to 10° CD8 T cells is specific upon infection by an un-
familiar antigen [4,5]. Hence it is a considerable challenge to
ensure this tiny subset of cells receives the stimulation nec-
essary to initiate the immune response.

It has long been understood that the lymph node (depicted
in Fig. 1) provides an optimal environment for generating
and maintaining adaptive immunity, but only in recent years
has it become possible to view inside the lymph node and
observe the behavior of lymphocytes and DCs as they func-
tion in vivo. Researchers using multiphoton microscopy have
imaged murine immune cells deep below the surface of in-
tact lymph nodes, revealing that lymphocytes and DCs are
both highly active in promoting encounters with one another
[5-10]. T cells, which are predominantly found in the para-
cortex (see Fig. 1), are highly motile, crawling with a mean
velocity ~11 ummin~! and achieving peak velocities
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FIG. 1. Diagram showing the histological regions of a typical
lymph node. Antigen enters through the afferent lymphatic vessels
and is sequestered by DCs. T cells enter via the blood and survey
antigen-bearing DCs in the paracortex.

>25 wm min~'. Some dendritic cells are also motile (mean
velocity =2—-3 um min~') and can move their dendrites at
velocities up to =40 um min~! to increase the cells’ “effec-
tive volume” and thus their capacity to make contact with
surveying T cells [8]. The important physical parameters in
this process are summarized in Table I.

Remarkably, there is convincing evidence that both T
cells and DCs move randomly without directional bias [5-9],
contrary to the notion that cell movement is strategically
coordinated by the lymph node architecture [1], or that
chemotaxis is involved in directing T cells to antigen-bearing
DCs. This experimental evidence has led to the view that
immune surveillance by the T-cell repertoire is a stochastic
process, resulting from chance encounters between T cells
and DCs [11]. Although it is not universally accepted (Cas-
tellino ef al. [10] have recently shown that chemokines may
indeed bias T-cell trajectories), throughout this paper we fol-
low the stochastic view and regard T-cell movement to be
random and undirected.

Imaging techniques are also leading to an improved un-
derstanding of how antigen presentation occurs in vivo. Mul-
tiphoton microscopy studies [5-10,12] complement tissue
sectioning and confocal microscopy [13,14] to provide a
more complete picture of the early stages of the immune

TABLE I. Summary of parameters relating to cell motility and
the lymph node.

Parameter Value Source

Surface area of dendritic cell 18002400 wum? [8]

Radius of dendritic cell, ry, 20-25 pum [8]
Mean velocity of dendritic cell, s, 2 pm min~! [8]
Peak velocity of dendrites 40 wm min~! [8]
Radius of naive T cell, r, 3.5 um [1]
Mean velocity of T cell, s, 11 wm min~! [7]
Peak velocity of T cell >25 um min! [7.8]
Mean rate of T cell turns, A 0.5 min~! [7]
Lymph node diameter 1-20 mm [17]
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response. Data from imaging studies have been used by Ca-
tron et al. [15], who created spatially and temporally scaled
simulations of a two-dimensional cross section of a lymph
node. These simulations depict the immune response in the
first few days after infection to show how cell motility re-
sults in T-cell-DC encounters.

Understanding cell activation and proliferation is key to
developing larger models of the immune response. Since an
early model proposed by Bell [16], many authors have mod-
eled immune dynamics using coupled nonlinear ordinary dif-
ferential equations (ODEs). ODE models are appealing be-
cause they are straightforward to solve and their qualitative
behavior is consistent with experimental observations. How-
ever, such models also have many limitations.

First, the ODEs are generally a deterministic description
of an underlying stochastic process; the dependent variables
in the ODEs are averaged quantities which neglect
spatial variation. This assumption is hard to reconcile with
an adaptive immune system whose function relies strongly
on its spatial structure. Second, when the number of reactants
is small then stochastic fluctuations are too large to neglect
and in these circumstances the deterministic description
is poor. Deterministic descriptions are especially weak in
the early stages of an immune response when there are very
few antigen-specific cells. If we wish to consider a single
precursor cell then the “precursor cell concentration” is ill-
defined and the deterministic description becomes meaning-
less. A third criticism is that ODE models often contain a
large number of parameters which are difficult to measure
experimentally.

We avoid these problems by adopting an alternative
approach. In this paper we formulate a mathematical model
of the transport process by which a T cell encounters a
DC to initiate an immune reaction, by analyzing a single
T cell and using parameters which have been reported
experimentally.

The problem of an immune reaction which depends on
contact between T cells and DCs is analogous to a chemical
reaction in solution, where reaction occurs only when
the diffusing reactants collide. Such diffusion-limited
reactions have been extensively studied due to their wide-
ranging applications [18]. The early analysis by Smolu-
chowski [19] first proposed a method of calculating the
rate coefficient of an ODE in terms of the diffusion coeffi-
cients of the reactants. More recently Tachiya [20] showed
that Smoluchowski’s solution could be derived by analyzing
the reaction probability of isolated pairs of diffusing
reactants.

The aim of this paper is to quantify how long it takes for
T cells to become activated; this time is of practical interest
to immunologists but is very difficult to measure experimen-
tally. Our approach is to model T cells as random walkers
and DCs as stationary targets. In Sec. II we extend Tachiya’s
diffusion theory to calculate the activation time for a T cell
which moves according to a fixed-speed “velocity-jump”
equation [21]. Consistent with experimental evidence which
shows that T cells move in discrete lunges [6,9], the random-
walk model assumes that the walker moves in straight line
segments, and between segments re-orients itself randomly.
We show in Sec. III that the Smoluchowski diffusion solu-
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tion is a leading-order solution of our model which holds for
large time, under appropriate conditions. We also calculate
higher-order corrections to give improved accuracy at inter-
mediate times, and compare our solution with results from
Monte Carlo simulations. Our analysis makes explicit both
the assumptions on which the solution is based and the de-
pendence of the solution on experimentally measurable pa-
rameters. In Sec. III D we estimate the number of DCs re-
quired for a successful immune response and we compare
this figure with an existing estimate from the literature. In
Sec. III E we use simulations to compare the solution for a
walker which re-orients isotropically between steps with the
solution for a walker which re-orients according to an experi-
mentally observed turning distribution. We discuss in Sec. IV
the validity of our modeling assumptions and how they may
be relaxed in the future.

II. MATHEMATICAL MODEL

Following an infection we suppose that a small subset of
T cells within the local lymph node are antigen-specific. We
consider a single antigen-specific T cell and henceforth refer
to this as the “walker.” The lymph node contains many DCs
of which some fraction express peptides of the infecting an-
tigen. DCs which do not bear antigen are subsequently ne-
glected, whereas antigen-bearing DCs are termed “targets.”
We assume that the targets lie within the lymph node para-
cortex, and we denote this domain by I'.

Our aim is to calculate the time taken for a walker to
encounter a target. Borrowing a phrase from the chemical
reaction literature, we call this time the “survival time” and
denote it by 7. Because the movement of walkers and the
distribution of targets are random, 7 is itself a random vari-
able which is characterized by the distribution

Prob{r> 1}, (1)

which we term the “survival probability.” Our objective is to
calculate this probability distribution.

We may assume without loss of generality that the walker
is centered initially at the origin and we suppose there are N
targets centered at Xo,>X0,» -+ X0, The survival probability
for the walker amongst this configuration of targets is written
S N(t;xol,xoz, ,XON). Provided the concentration of targets
is sufficiently small and the targets are not clustered then the
survival probability can be factored as

N
SN(t;xol,xoz, ,XON)=HS(t;x0i). (2)
i=1

This factorization (discussed by Weiss [22] and in references
therein) neglects competition between targets to make
first contact with the walker; the competition is a so-called
“many-body” effect and Berezhkovskii er al. [23] have
shown, in the case where the targets are stationary, that
the solution obtained using Eq. (2) is a lower bound on
the exact solution. The many-body effects become
less pronounced as the dimensionality of space increases and
as the concentration of targets decreases. For problems
in three spatial dimensions with targets distributed
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sufficiently sparsely then the factorization provides a good
approximation [23,24].

Equation (2) simplifies the problem considerably; the
task of calculating the survival probability of a walker
amongst numerous targets reduces to the much easier task of
calculating the survival probability of a walker from a single
target.

Supposing that the targets are uniformly distributed in I'

then the spatially averaged survival probability S() from a
single target is

S(1) =f S(t3x0)d o/ [T, 3)
r

where || is the volume of I'. Thus from Eq. (2) we have

Sy =[S (4)

Equation (4) provides an effective means of calculating
the spatially averaged survival probability when the number
of targets, N, is small. When N is large and the domain I
over which the targets reside is also large then it is more
convenient to use the asymptotic approximation N, |I'| — o
[20]. In this case we may work in terms of the concentration
c of targets,

c= lim N/T

N,|T|—

, (5)

where c is a finite constant. Then the survival of a walker in
an asymptotically large domain containing targets at concen-
tration c is

[Tle
S.(f)= lim |:f S(t;xo)d3x0/|F|] , (6)
r

|T|—oe

which can be rewritten as

S.() = exp(— c f [1- S(t;xo)]d3xo) . (7)
r

Hence Eqs. (4) and (7) are two expressions for the spatially
averaged survival probability of a walker amongst a group of
targets, and both are written in terms of S(z;%,), which it
remains to determine.

A. Describing the random walk

Recall that S(7;x,) is the survival probability of a walker
given that there is a target located at x. This is the distribu-
tion of encounter times between the walker and the single
target. By a change of coordinates we may equivalently take
the target to be at the origin, and then x,, is the initial position
of the walker. The latter approach proves more convenient
and is used henceforth. The model geometry is shown in Fig.
2. We model the target as a stationary sphere with an “effec-
tive radius” r, to account for its irregular shape and the rapid
motion of its dendrites. The walker is modeled as a sphere of
radius r, which moves according to a “velocity-jump” pro-
cess [21]. We will use “reaction” to mean the collision of a
walker with a target, which occurs when the center of the
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FIG. 2. The model geometry.

walker is a distance a=r,+r, from the center of the target; a
is henceforth termed the “reaction radius.” The constant-
speed version of the velocity-jump equation given by
Othmer et al. [21] is

Jd
[?—(f +5V-(Qg)==Ng+X\ f 7(Q,Q")q(x,Q',1:x,)d*Q’

(8)

where s, is the speed of the walker, ) is its direction
(jQ|=1), and T(Q,Q') is the probability that a
re-orientation will change the walker’s direction from Q' to
Q. The dependent variable g(x,€),;X,) is a joint probability
density function (PDF) for the position x and the direction {2
of the walker at time ¢. Equation (8) is the limit over many
realizations of a discrete process in which the cell moves at
constant speed in straight-line segments. The interval dura-
tions are chosen from an exponential distribution with mean
1/\. In between intervals the cell re-orients itself randomly
according to the turning kernel 7.

We first consider the simple case in which the re-
orientations are isotropic (this assumption is discussed later
in Sec. IV). The assumption neglects any correlation between
the pre- and post-turn directions and corresponds in three
dimensions to choosing

7(Q,Q') = ﬁ 9)

Thus, with isotropic turning, the governing equation (8)
becomes

dq Ap

45 V- (Qg)=—N\g+—, 10

Pl (Q2q) q+, - (10)
where

p(x,t;xO)=fq(x,ﬂ,t;xO)dzﬂ (11)

is the PDF for the position of the walker.

The survival probability is related to the position of the
walker in the sense that a surviving walker is one whose
position has not come within a distance a of the center of the
target by time . We can regard an encounter as a process
which removes a walker from the domain, thus S(¢;x,) is
simply the probability that the walker remains within the
domain at time 7. Hence
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S(2;%) :f P(X,1:X0)d>x, (12)
r

where I' is the exterior to the sphere of radius a at the origin.

In the literature of diffusion-limited reactions the evolu-
tion of the position PDF, p(x,7;%,), is governed by a diffu-
sion equation. While a random walk such as that described
for the walker may resemble diffusion on a sufficiently long
time scale, we use as our starting point Eq. (10) in order to
capture behavior at intermediate times.

Since we are only interested in the survival probability
of a walker, the functions p(x,t;%;) and ¢(x,€Q,7;%)
contain more information about the walker than we
require. Our approach is thus to derive an expression for
S(t;%x,) from Eq. (10) by integrating to remove unnecessary
information.

B. Moment closure

Equation (10) can be integrated with respect to £ to give
J
L sv.J=0, (13)
Jat

where

J:fqﬂdzﬂ, (14)

and s,J is the probability flux.

Equation (13) is not closed for p because the flux J is
unknown. An expression for J can be obtained from multi-
plying Eq. (10) by € then integrating over 2, hence

d
a—':+stV~ij.Qd29=—)\J. (15)

This equation for J is written in terms of the second velocity
moment of ¢ (ie., [qQQd*Q) which is unknown. In
general, multiplying Eq. (10) by Q" and integrating over
Q relates the nth and (n+1)th velocity moments, and so
the number of wunknowns exceeds the number of
equations. Hence further assumptions are required to close
the system.

Following (for example) Bearon and Pedley [25] we con-
sider the behavior on length and time scales much greater
than those of the individual random walk steps; this is the
appropriate regime because a T cell will typically make a
large number of steps before it encounters an DC. Referring
to Fig. 2 and recalling that a=r;+r,, the distance a walker
must travel to encounter a target is |Xy|—a. Since the mean
length of an individual step is s,/\, we introduce the dimen-
sionless parameter

s; IN

~[xol=a’

(16)

&

which we assume to be small (¢ < 1). We nondimensionalize
x on the mean step length and rescale on & so that the initial
walker-target separation is O(1), hence
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X = —i, (17)
€

where the tildes are used to denote dimensionless variables.
We similarly nondimensionalize ¢ on the mean step time and
use the diffusion scaling ¢~ |x|? so that

I _
t=—5t. 18
v (18)
The dependent variables are nondimensionalized by
e\’ _ _~
(P.q.9) = (S—) ?.3.). (19)
t

Dropping tildes for convenience, the governing equations
(10), (13), and (15) become
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dq p
= 4eV . (qQ)=—g+ -, 20
g, tE (q€2) q+, - (20)
9
2L L ev.3=0. 1)
ot
2(?'] 2
85+8V' qQQd"Q=-]. (22)

Expanding the dependent variables in powers of & (i.e.,
p=po+ep,+€>p,+- -+, with similar expansions for ¢ and J)
and using the identities in Appendix A leads to

1 ap
q=—[p0+s(p1—Q~Vp0)+82(p2—a—to—ﬂ-V(p1—Q~Vp0)>] +0(s%)

4
L
4ar

1 ,1 (20 1 L
J=—8§Vpo—8 ng1+8 §5VP0‘§VP2‘§VV Po
+0(eh

1 29 1
=— sng + 83(§EVP - gVV2p) +0(e%), (24)

where the expressions are written in terms of the composite
asymptotic approximation for p, which contains information
about p at each order. Substituting J from Eq. (24) into Egq.
(21) gives

in r=b, where b=¢e\a/s,. Hence p satisfies

22

edp dp 1_, 3
——+—=-Vp+0(e),
PRy p+0(e’)

a3 (26)

which is the telegrapher’s equation. It is also necessary to
determine the conditions for p on an absorbing boundary.

C. Boundary condition on a target

We consider the surface of a target to be an “absorbing”
boundary, so that a walker which touches the target is re-
moved from the domain. The formal condition on ¢ is

[p—sﬂ -Vp+ 82<— % +(Q- V)2p>] +0(Y),

(23)

q(X’Q’t;X0)|0Fabs =0 for  such that -n >0,
(27)

where dl', is the surface of the target and n is a unit vector
normal to the surface, pointing into the domain. However, to
solve Eq. (26) we must determine a condition on p. We do so
by imposing the weaker condition that the local flux of in-
bound walkers is zero:

Jin(X,0)lgr =1 f qlor, Q*Q =0, (28)

mn
where the integral is performed over the hemisphere of in-
wardly pointing directions. Substituting ¢ from Eq. (23) and
using the integral identities given in Appendix A leads to the
following condition on p:

3

2 1 1
{p —-e-n-Vp+ 82<— EVZp + Z(n . V)zp)}

&Fabs

+0(g%) =0. (29)

D. Formulation in terms of the survival distribution
Tachiya [20] exploits the property

p(X’t;XO) =P(X0J§X) (30)

for any function p which solves the diffusion equation plus
suitable boundary and initial conditions. In Appendix B we
show that Eq. (30) also holds for solutions of Egs. (26) and
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(29). Using Eq. (30) allows the governing equation to be
written with the spatial arguments reversed, resulting in the
so-called “adjoint” or “backward” equation,
25
edp dp 1_, 3
——S+—==Vip+0(e), 31
5o T g 3w toE) G

where V% operates on the initial position x,. Recall that we
wish to solve for the survival probability S and that p con-
tains more information than required. Using the definition of
S(t;x,) from Eq. (12), Eq. (31) can be integrated with respect
to X to give

e2PS 9SS 1

st03 32
S92 o (&%) (32)

Provided the initial walker-target separation is sufficiently
large that the exponentially small absorption of walkers at
small times can be neglected, then the initial condition on §
is

S|t=0=fp|,=0d3x=1, (33)

which is independent of the initial position x,. Since the
boundary conditions are spherically symmetric, so must be

S is

2RSS 9SS 1 a( as)
(34)

o0 B
592 ot 3rar\ or

where r=|x,| is the distance from the walker’s initial position
to the center of the target.

The boundary conditions on S can be determined in the
same way, using the reciprocal relationship (30) to write the
boundary conditions on p with the arguments reversed and
then integrating over X. Following this procedure we obtain

248 185 1 298
S—e-—+e =0,
3 dr 49r 1277 ar ﬁr v=b
(35)
limS=1. (36)
II1. RESULTS
A. Solution for the single-target problem
To solve Egs. (34)—(36) we seek a solution
S=Sy+&S +eX85+ . (37)
The leading-order problem is then
aSy 1 a9 ,d5, .
R () (ICUSEURE TR O]
(38)

which is the Smoluchowski diffusion problem. The solution
is
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FIG. 3. Plots of the survival distribution (37) for a variety of
target radii and initial positions. The solution (37) is plotted to
leading order (dashed line), to O(g) (dotted line), and to O(e?)
(solid line). Shown are plots for (a) e=1/3, b=1/3, r=[x,|=4/3,
(b) e=1/3, b=2/3, r=5/3, (c) e=1/3, b=1, r=2, and (d)
e=1/10, b=3, r=4. The crosses in each graph show the survival
distribution calculated from 7 X 10* Monte Carlo trials. The analyti-
cal solution becomes increasingly inaccurate as the ratio of the re-
action radius to the step length, a\/s,=b/e, decreases.

/3 b
where 7= \7(r = ). (39)
Vit

b
So=1-— erfc(n),
r

The solutions at the next two orders are

\’gb
S, = —<—/— exp(— 77) + erfe( 7])) , (40)
3r \ 7Tt
1 b77 7\3 1
Sr=—|ex 2( >+—erfc
|: p(=77) 5\7Tt 18\7Tt 18b (7])}
(41)

These solutions are plotted in Fig. 3. Note that retaining the
O(g) term increases the survival probability of the random
walker. The O(g?) correction is small; S, is negative for
small times and positive for large times.

B. Solution by Monte Carlo simulation

To test the validity of the analytical results we performed
Monte Carlo simulations to calculate the survival probability
of a walker in the presence of either a single target or a
uniform distribution of targets. The simulated system imple-
ments the same assumptions as the mathematical model: the
walker moves at constant velocity for intervals whose
lengths are drawn from an exponential distribution, between
which the walker reorientiates isotropically. The simulation
runs until the separation between the walker and a target
center is equal to the reaction radius a, at which point the
survival time is recorded. After performing a large number of
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realizations, the survival probability S(7;x,) is calculated as
the proportion of cells whose survival time exceeds t.
Figure 3 shows a comparison between the simulation
results and the analytical solution for a walker in the pres-
ence of a single target. The solutions agree very well in
(c) and (d) when the step length s,/\ is smaller than the
reaction radius a, but the analytical solution breaks down in
(a) and (b) when the step length and reaction radius are of
comparable size. To understand this, note that in deriving the
governing equation and boundary conditions (34)—(36)
we have expanded in powers of e. It follows then that to
subsequently apply a boundary condition on r=b we require
b=gelkals;>¢, i.e., a>s,/\, hence the target must be larger
than the step length. Physically, the breakdown occurs be-
cause in the expansion (23) ¢ is isotropic to leading order
over O(1) lengths. Since ¢ depends strongly on direction {2
on opposite sides of the target, applying the boundary con-
dition (29) for a small target violates the isotropy of Eq. (23).

C. Solution for multiple targets

The solution for S(7;x,) can be used with either Eq. (4) or
Eq. (7) to calculate the survival probability for a walker in
the presence of numerous targets. Recall that Eq. (4) is ap-
propriate to use when the number of targets N is small and
Eq. (7) is more convenient when N is large. However, if I is
finite then Eq. (7) is valid only at early times when the ef-
fects from walkers which escape I' can be neglected.

Here we calculate S‘C(t) using Eq. (7). The calculation re-
quires an integral with respect to x, and (because & depends
on x;) it is convenient to revert to dimensional variables.
Thus the leading-order integral is

f [1 = Sy(t:x0) 1%, = daNmoa\m+ \mar),  (42)
r

where o= s,2/ (3N\). At next order,

I

8 / —
f £S,(t:x0)d’xy = \ 7Ta-(v/'z_mz +4a V’; +\7ot),
r Sy
(43)
and finally at O(g?)
w642 -
f &28,(1;x0)d’x = %(T — 26a\mo - 60\t
r 5s; \t
[ 31
5Vmwo?t
. L) | )
a

The results are shown in Fig. 4. Equation (44) diverges as
t—0; however, solutions of Eq. (32) are valid only for
t>¢?. The initial transient behavior cannot be described
without formulating and solving the early-time problem.

D. Solution with biological parameters

The biological parameters related to cell size and motility
are summarized in Table I. The ratio between the reaction
radius and step length is (ry+7r,)/(s,/\) = 1.14. Because this
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FIG. 4. The survival probability for a single cell within a lymph
node; with reaction radius a=25 wm, and the DC concentration
calculated supposing there are (i) 200, (ii) 1000, and (iii) 3000 DCs
uniformly distributed within a spherical paracortex of radius 2 mm.
The solid lines are calculated from 2 X 10* Monte Carlo trials, as-
suming the T cell re-orients isotropically; the dotted lines show the
analytical solution from equations (7) and (42)—(44). The dashed
line is the Monte Carlo solution (for 1000 targets, from 2 X 10*
trials) for a walker which re-orients according to the empirical turn-
ing distribution measured by Mempel et al. [9] (shown as dots in
Fig. 5).

ratio is only slightly greater than unity, the regime is similar
to the regime of Fig. 3(a) in which the analysis overpredicts
the survival probability for the single-target problem. This
overprediction is also reflected in the solution for the
multiple-target problem, shown in Fig. 4.

Table I does not include the concentration of DCs within
the lymph node because this parameter has not been accu-
rately measured. Bousso and Robey [5] performed an experi-
ment in which antigen-primed DCs were injected subcutane-
ously into mice and antigen-specific T cells were injected
intravenously. They estimated that of the 10° injected DCs,
around 10°~10* DCs reached the draining lymph node. Al-
though the number of antigen-bearing DCs within the lymph
node following adoptive transfer is not necessarily represen-
tative of the number of DCs in a lymph node after a natural
infection, Bousso and Robey’s estimate is the best available.
The solution for S.(¢) for various numbers of DCs is shown
in Fig. 4.

Bousso and Robey [5] reported that around 50% of the
transferred T cells were engaged with DCs 20 h after injec-
tion. Assuming the paracortex has a radius of 2 mm then our
results, shown in Fig. 4, are consistent with Bousso and
Robey’s observations provided the number of DCs is within
their estimated range.

Bousso and Robey [5] also estimated that a single DC can
scan as many as 500 T cells per hour. From this observation
they concluded that 200 DCs would be sufficient to detect a
naive antigen-specific T cell at a frequency of 1 in 10° within
1 h. This calculation assumes that surveillance of T cells by
DCs is optimal; however, according to the random-walk
model, the surveillance is stochastic and transport-limited.
Our results show that the probability that 200 uniformly dis-
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FIG. 5. A graph of data taken from Mempel et al. [9] showing
the turning distributions of T cells within the paracortex of a
lymph node. The two data sets correspond to the T cells turning in
the presence (dots) and absence (crosses) of peptide-bearing
antigen-presenting cells. The two solid lines are fifth-order polyno-
mial fits, and the dotted line is the PDF which characterizes the
distribution of the turning angle ® for an isotropic random walk,
Prob{#< © < ¢+d6}=7 sin 6d.

tributed DCs will detect any single T cell within 3 days is
only =30%. To ensure with probability >50% that a T cell
in a paracortex of radius 2 mm is activated within 24 h, the
required number of DCs is =1200; this is a density of
~35 cells mm™. The transport process by which T cells and
DCs interact means that far more DCs are required for effec-
tive surveillance than Bousso and Robey’s estimate.

E. Effect of anisotropic re-orientation

So far we have assumed that the random walker re-orients
itself isotropically each time it turns. A distribution which
characterizes T-cell turning has been measured experimen-
tally by Mempel et al. [9]. Figure 5 shows the contrast be-
tween the observed turning distribution [9] and the isotropic
distribution. The observed distribution is skewed towards a
small turning angle which indicates that a T cell tends to
choose a new direction similar to its pre-turn direction, a
property termed persistence. Figure 6 contrasts the displace-
ment of isotropic and anisotropic walkers (assuming no tar-
gets), calculated using Monte Carlo simulations and biologi-
cal parameters. The mean and standard deviation of the
displacement are notably larger for the more persistent
walker.

To understand how anisotropic turning affects the survival
distribution for a T cell moving amongst target DCs, we ran
simulations in which the walker turned according to the dis-
tribution shown as dots in Fig. 5. The solution, plotted as the
dashed line in Fig. 4, shows that the increased persistence
reduces the survival probability at small times when com-
pared with an isotropic walker, though the effect is small.
However, the persistent walker’s asymptotic survival prob-
ability is larger than the isotropic walker’s (not shown on the
graph) because the persistent walker escapes I' with a higher
probability.
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FIG. 6. The mean (dash) and standard deviation (dot-dash) of
displacements for a random walker which turn isotropically, com-
pared with the mean (solid) and standard deviation (dot) of dis-
placements for a random walker which turns according to the em-
pirical distribution from Ref. [9] (shown as dots in Fig. 5). Each
line is calculated from 2 X 10* trials, using parameter values appro-
priate for a T cell: s5,=11 wm min~!, A=1/2 min~!. The mean and
standard deviation are larger for the persistent walk than for the
isotropic walk.

IV. DISCUSSION

The recent experimental effort to characterize migration
of immune cells within the lymph node has led to a greater
understanding of how adaptive immunity is generated. In this
paper we have modeled the movement of T cells as a random
walk and, by using parameters reported in the experimental
literature, we have provided a quantitative analysis of the
time it takes for an antigen-specific T cell to encounter an
antigen-bearing DC.

Comparison with Monte Carlo simulations shows that the
analytical solution for the survival distribution overestimates
the real solution. This difference occurs because the radius of
a dendritic cell is not much larger than the length of a typical
T cell step. The analytical solution is reasonable, however,
and shows explicitly the dependence of the solution on the
model parameters.

We have modeled the DCs as uniformly distributed, sta-
tionary spheres and the T cell as a fixed-speed random
walker which re-orients randomly between exponentially
distributed intervals. Further assuming that the re-
orientations were isotropic made the problem amenable to
analysis and allowed the solution to be written so that its
dependence on biological parameters is explicit. Taking these
assumptions in turn, let us consider their validity and how
they affect the solution.

Studies using two-photon microscopy show that some
DCs are motile, although there is disagreement regarding DC
speed: Miller et al. [7] report a mean of 2-3 um s,
whereas Bousso and Robey [5] observed a mean of
5—6 ums~!. The discrepancy may be due to differences in
behavior between antigen-primed and unprimed DCs. Also,
Bousso and Robey measure the position of the center of
mass of the DC, which changes very rapidly due to shape
changes caused by motion of the dendrites. Thus the mean
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speed may be deceptively large with a strong correlation be-
tween the directions of subsequent steps. In other words, the
position of the center of mass may oscillate rapidly, but the
net displacement over a number of steps may be small. The
plots in Refs. [5,9] of individual DC paths support this idea.
Hence to model accurately the motion of a DC one must bear
in mind the correlations between steps.

We have also assumed that the distribution of DCs is uni-
form. Mempel er al. [9] observed that DCs may strategically
position themselves near to the high-endothelial venules
from which T cells emerge into the lymph node, thus targets
may be clustered close to the initial position of the walker. A
nonuniform target distribution can be incorporated into the
model by replacing Eq. (3) with

S(r) = f u(x0)S(13%0)d’x,, (45)
r

where u(x) is defined such that [ u(x,)d’x, is the probabil-
ity that any given target is centered in the arbitrary volume 7.
The uniform distribution, u(xy)=1/|T'|, which we have used
throughout, provides an upper bound on the survival prob-
ability of a walker whose targets are strategically clustered.

We have modeled the T cell as a constant-speed random
walker. The more general velocity-jump equation of Othmer
et al. [21] can be used for a variable speed walker; however,
the data currently available are not sufficient to determine the
distribution of T cell speeds. Likewise, the assumption that
the step intervals are exponentially distributed can be re-
placed once the step length distribution is accurately charac-
terized experimentally.

In the analysis we assumed that a T cell re-orients itself
isotropically when it turns. A more accurate model incorpo-
rates the turning distribution reported by Mempel et al. [9].
The persistence can be quantified by calculating the mean of
the cosine of the turning angle ¢ [26]. For an isotropic
walker ¢=0, whereas for a perfectly persistent walker ¢=1.
For the data from Ref. [9] we calculate ¢=0.47 in the ab-
sence of peptide-bearing DCs and ¢=0.17 when DCs are
present. This is evidence that T-cell motility patterns are al-
tered within an antigen-challenged lymph node. It remains
unclear whether a T cell is able to detect that peptide-bearing
DCs are nearby and adapt its searching strategy, or whether
the different migratory behavior is due to altered physiologi-
cal conditions within a challenged lymph node.

Considering a nonisotropic walker analytically corre-
sponds to choosing a turning kernel, 7(€2,’), which is a
function of the angle between the pre- and post-turn direc-
tions. With nonconstant 7 it is less straightforward to derive
an equation for p because Eq. (8) remains an integral-
differential equation. Techniques for doing so have been dis-
cussed by Hillen and Othmer [27]. Figure 4 shows that the
anisotropic turning distribution has a small effect on the sur-
vival distribution, and incorporating anisotropic turning into
the analysis is probably not warranted until other aspects of
the model are refined.

Castellino et al. [10] have recently suggested that DCs
actively attract T cells by secreting chemokines. Chemotaxis
can be incorporated in the model once the biological mecha-
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nism is established; it is currently not known whether T cells
bias their re-orientations towards a target, whether T cells
suppress their turning rate when moving in a preferential
direction, or whether they use another mechanism. A poten-
tial disadvantage of chemotaxis is that T cells could accumu-
late around DCs, leading to congestion which inhibits sur-
veillance. A computational model which considers
competition for occupancy would be required to resolve this
complicated question.

In conclusion, we have presented a model for the
movement of T cells amongst dendritic cells. We have
calculated a distribution which characterizes the time
taken for an individual T cell to encounter an antigen-
presenting DC, and Egs. (4), (7), and (42)—(44) make clear
the dependence of the survival time on physical parameters.
Our results may be used to determine rate coefficients
for larger-scale differential-equation models of the immune
response.
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APPENDIX A: INTEGRAL IDENTITIES IN THREE
DIMENSIONS

The following identities are used to calculate Egs. (23)
and (24):

f O0,d*Q = f 0,0,0,d°Q =0, (A1)
) 4
) 4ar
Q[Qijde Q = Elijkm’ (A3)

where §;; is the Kronecker delta and 7y, = 6;;00,+ 6k Sj
+ 6,0 The corresponding identities for integrals over the
unit hemisphere, used to calculate Eq. (29), are

J Qidzﬂ = 7Tni, (A4)
) 21
f QindeZQ = g(”m]ijkm - ”i”j”k), (A6)

where n is the normal to the flat side of the hemisphere,
pointing into the hemisphere.

APPENDIX B: PROOF OF THE RECIPROCAL PROPERTY,
P(X,t5X)=p(Xg,t;X)

We now show that p(x,7;x,) is reciprocal in its spatial
arguments when p solves the system

011910-9



PRESTON et al.

¥ 9P
& 5 +
ot ot

d &
[p + 8,6’(9—1; + 82(’)/(9_:; + (Vzpﬂ

subject to an initial condition p|.,, where B, 7y, and { are
constants and dI" is an absorbing boundary. Note we require
only a single initial condition to solve perturbatively at large
times.

It is sufficient and simpler to show that the Laplace trans-
form of p is reciprocal in its spatial arguments, i.e.,
D(x,5;X0)=p(Xo,5;X), where the overbar represents a
Laplace transform with respect to t. Hence Laplace trans-
forming the governing equation, boundary, and initial condi-
tion for p gives

=Vp, (B1)

=0, (B2)
ar

Lp=(V?>=5—-e*?)p(x,5:X)

d
= - p(x.1:X0) | o(s8? + 1) — sza—’t’(x,r;x())

0= {ﬁ+8ﬁj—5+82< j—5+§vzﬁ>}

Noting that the operator L is self-adjoint, we consider the
integral

s

=0
(B3)

(B4)

ar

f (OLp — pLY)dx, (B5)
I

where 0=0(x,s) is a yet-unspecified function. This may be
re-written

f (oV?p - pV*0)d*x (B6)
r
= f V.- @Vp-pVo)dx (B7)
r
I R A
—LF (v&n pan)dx (BY)

upon applying the divergence theorem. We now suppose that
U solves

L= (V> —s->)v(x,s;8) = o(se?+1)

-v(x,t; &)

, (B9)
=0

and satisfies the same boundary conditions as p (B4). We
assume that p|,_ satisfies
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f F(x)limp(x,1;Xo)d>x = F(x,) | limp(x,1;X0)d’x = F(x,),
r 1—0 rt—0
(B10)

for some function F(x). Furthermore, by conservation of
mass [pd®x=1 for t=0, so

Jdp J
—(x,1;%0)d" =—f LX) dPx =0, B11
fr Py (x,1;X0)d"x o FP(X Xo)d°x ( )

because I' is fixed. Hence, since dp/dr is singular as t— 0,
we assume

p p
f F(x)lim&—pd3x —F(x,) | imZL#x=0. (B12)
I

t—0 0t rt—=0

With Egs. (B10) and (B12), and similar conditions for v,
Egs. (B5)—(B8) can be evaluated to leave

_aa)dz
-p— X.
pan

(B13)

[P(&.53%) — 0(x,5:6)1(se” + 1)=JF (52—17

The integrand of the surface integral does not trivially vanish
for absorbing boundaries. We proceed by exploiting the as-
sumption that & is small, expanding p and 0 as power series
in g, and then considering the relationship between p and 0
at each order.

The expansion of the boundary condition (B4) is (with
overbars dropped)

(9]70 &2
p0+8'8<p1+'8_o7n> ( 2+B—n+7&2+§V )
(B14)

and vy,v|,v,,... satisfy the same equations. From Eq. (B13)

we then have

J J
O(1):py(&.5:%0) = vo(Xg,5:8) = (Uo apo -Po— ;0>dzx =0,
ar
(B15)
J J
O(e):p1(£5:%0) = v1(X0,5:€) = f ( _p, &‘;”)dz
[ mof,, g0
_Lr n (vl+'8(9n )dx 0.
(B16)

Noting that p and v satisfy the same governing equation and
boundary conditions we may write

p(y.s:¥0) =v(y,s:¥0), (B17)
and by comparison with Eq. (B15) observe that
Po(X,5:X0) = po(X0,55X), (B18)

as required. The same reciprocal relationship holds for p;
from Eq. (B16).
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At O(&?) the right hand side of Eq. (B13) is

J (v L TN TS LT @)dax
r > on " on % n * on " on % n

f (9[72 (9U2 (7[)1( B&Uo)
T % on Po on  an\' on

301( 5170) ‘9170( Fvg 2 )
—\p+B— | -—\yv— +Vv
on p+p on on yﬁnz EVuo

(900 &Zpo 2 ) 0
+—\y— +{V d°x. B19

o (3/ o2 FEV o] |dx (B19)
Since py=0 on dI', we have p0t=V2p0=0 on JI" (and simi-
larly for v,). Thus a number of terms in the integrand vanish,

leaving only
vy Ppy  Ipy
Vf (ﬂ o _ 9po vo>dgx’
ar

- B20
on an® on on® ( )

which it remains to show is zero. Suppose that the surface JI’
is given in Cartesian coordinates by f(x,y,z)=const. Intro-
ducing transformed coordinates,

Uz = MS(X’y’Z)’
(B21)

uy=u(x,y,2),  uy=uy(x,,2),

we may write the position vector of some point r as
r= r(ul’u25u3) . (B22)

The unit vector (le;|=1) normal to the surface u;=const
is
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1 or ar
e, =——, whereh = (9—
u

, B23
h] L?M] 1 ( )

and the unit vectors e, and e; and scale factors s, and h;
are defined similarly. We choose u;=f(x,y,z) so that
e;=n, and we choose u, and u3 so that e;-e,=e;-e3=e,-e3
=0. The Laplacian in orthogonal curvilinear coordinates is

[28]
— {i(ﬁ%)i(ﬁ%)
h1h2h3 0"141 h] ﬁul (91/!2 ]’lz (?Mz
d (hhyo
+—<‘—2ﬂ>} (B24)
(9143 h3 (91/{3

but since py=V?p,=0 on JI', and since e, and e are tangen-
tial to o', therefore dpo/du,=0=dpy/ dus=Ppyl dus
=& polu3 on JI'. Thus Eq. (B24) gives

o _ (M)"i(%)%

B25
an® hy on\ h; ) dn (B25)

on JI'. A similar expression holds for v,. Substituting these
expressions into Eq. (B20) reveals that the integral is zero, as
required.

At O(g?) we therefore have

s[po(€.5:%0) —vo(X0,5:8) ] + pa(&.5:X0) —va(X,5:€) =0,
(B26)

and hence

Pa(&.5:X0) =v5(X¢,5: ). (B27)

Again, by comparing this with Eq. (B17) we see that p, is
reciprocal in its spatial arguments and thus p(x,s;X)
=p(xy,5;X) to O(g?), as required.
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